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The energy levels of the Schrodinger equation for various types 
of potentials using a renormalized method 

M R M Witwit 
Department o f  Applied Mathematics, University of Hull, Hull HU67RX, UK 

Received 26 November 1990 

Abstract. A perturbative method is used to compute energy levels for many different forms 
of potentials. Results of high accuracy are produced for various eigenstates. 

1. Introduction 

The aim of this work is to use numerical techniques to compute the energy eigenvalues 
for one-particle Schrodinger equations in one and three dimensions, for different forms 
of potentials. We face convergence difficulties in dealing with the perturbation method. 
However, there is an extensive range of techniques in the mathematical literature to 
deal with the divergence problem, e.g. renormalized series, Pad6 approximants and 
the Aitken procedure. We wish to point out that we overcome the convergence problem, 
to ensure that our results are correct, by using the renormalization parameter (K) 
which has been used widely by Witwit (1989). The renormalization parameter K plays 
an important role in the convergence aspects of the calculations which are investigated 
in this work. Also, Pad6 approximants have been used to calculate the energy eigen- 
values for some problems. 

This work is organized as follows. In section 2 we investigate the Gaussian potential 

V ( r )  = -A e-”’. ( 1 )  

This potential has been studied by Bessis et al (1982) and they have computed the 
bound state energies of the Gaussian potential, using a perturbational and variational 
treatment on a conveniently chosen basis of transformed Jacobi functions. They have 
calculated the energy eigenvalues for different values of the quantum numbers ( I ,  n) .  
Lai (1983) calculated the bound state energies of the same potential for various 
eigenstates ( l ,  n = 0-7) by using the hypervirial Pad6 scheme. Also Chatterjee (1985) 
has applied the 1/N expansion method to obtain the bound state energy levels of a 
Gaussian potential. The 1/N expansion method yields energy values which are in 
good agreement with those results which are available in the literature. In this work, 
we use the hypervirial method to calculate the energy eigenvalues for various bound 
states. We extend our calculation to highly excited states ( O S I G  12) and (OS n ~ 7 ) ,  
and our method achieves 20-digit accuracy. Such a high degree of precision has not 
been obtained before by any other method. 

In section 3 we investigate the Yukawa potential: 

v(r) = z r - ’  e P  Z = l , 2 , 3  ,.... (2) 
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Grant and Lai (1979) have applied the hypervirial relations with the Hellmann- 
Feynman theorem to study screened Coulomb potentials. They calculated (K, L, M )  
shell binding energies for different values of Z ( 2 S Z S 5 0 ) ,  using power series in A 
up to order A2'; Lai (1981) studied the problem of the Yukawa potential by using the 
hypervirial Pad6 scheme for various eigenstates for Z = 1, and found that the [6,6] 
and [6,7] Pad6 approximants to the energy series can account for various energy 
eigenvalues to a very high accuracy. Vrscay (1986) developed a simple power series 
method to calculate to high order the Rayleigh-Schrodinger perturbation expansions 
For energy ieveis of a Yukawa-type screened Couiomb potentiai. i i e  produced resuits 
to very high accuracy (20 digits) for Is, 2s and 2p states. In the present work we attack 
this problem by using a renormalized series, and perform our calculation for many 
eigenstates. The renormalized series yields energy eigenvalues with excellent accuracy 
(more than 15 digits). 

In section 4 the energy eigenvalues are calculated for the exponential cosine screened 
LUULULII" purcrruar _. . . , . -L  ~-.&.-.:.. 

V(r) = -r-' e-*' cos(Ar) (3) 
and this potential has been treated by several approximate methods. For instance, 
Aparna and Pirtam (1980) applied the generalized virial theorem and Hellmann- 
Feynman theorem to calculate perturbatively the bound state energy levels without 

potential for various eigenstates within the framework of the hypervirial Pad6 scheme. 
We used a renormalized series to calculate the energy eigenvalues for various states 
and different values of screening parameter. Our method yields 15 digit accuracy, and 
the results are given in table 5 t .  

using a pert.urhed_ wavefu_nc!iQn: Lai !!9X2) has ca!cu!ated the energy eigenvalues Qf 

Section 5 deals with an eigenvalue calculation for the Hulthen potential 
r .-A. i 

(4) 
V( )=-A[-]. e 

Lai and Lin (1980) have applied the Pad6 approximant technique to a perturbation 
series obtained by use of hypervirial and Hellmann-Feynman theorems. They computed 
the energies of Zp, 3p, 4p, 4d and 4f states. Also, this potential has been treated by 
Dutt and Mukherji (1982) they proposed a new approximation scheme to obtain 
analytic expressions for the bound state energies and eigenfunctions for any arbitrary 
bound (1, n )  state of the Hulthen potential. We use the renormalized series to calculate 
the energy eigenvalues for potential (4) for various values of A and for highly excited 
states (2p to 8h). The renormalized series gives high accuracy (15 digits). 

Finally, we calculate the energy eigenvalues for potentials in (one and three 
dimensions): 

( 5 )  

~ 1 . i ~  ...-A 'L- D..AZ ..n-*,.v:...n..+ thn h.,-mrriiri31 -dhn,i t,. mmnll+e the .,c UIC" U l C  1 Ll"C Llp'yL""""Ll"L *,I" L . L I  L 1 J ' y b .  I. . .  y. I.. *..IVY L" -V".y..." ...- "I.".€,, 

eigenvalues for different values of A and excited states (n = 0 - 5 ;  I = 0 - 5 ) .  

t This table and all others in this paper have been deposited in the British Library Supplementary Publications 
Scheme, document no. SUP70042. 
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2. Hypemirial method of calculating energy eigenvalues for a Gaussian potential 

The solution of the Schrodinger equation with an attractive radial Gaussian potential 
of the form V(r) = - A  exp(-Ar2) is of importance in nuclear physics. It has been used 
as a potential model in the theory of nucleon-nucleon scattering. The Schrodinger 
equation for the radial part of the attractive Gaussian potential is given by 

where the units 2m = h = 1 are used, and the function in equation ( 7 )  can he expressed 
as 

q ( r )  = r-'@(r). (8) 
The potential A exp(-Ar2) can be expanded as 

m 

A exp(-Arz) = 1 V,Amr2m+2 (9) 
",=0 

with the potential coefficients V, given by 

V,,, = ( - l ) " A [ ( m +  1 ) ! ] - ' .  

Then the equation ( 7 )  takes this form 

( 1 1 )  1 m 

- D z + l ( l + l ) r - 2 -  1 V,,A"r2"+2 @(I)=  %@(I) 
",=0 

where Z = E +A. If we use the perturbation expansions 

E = E  E ( I ) A '  ( 1 2 )  

( x N ) = X A ( N ,  M ) A M  ( 1 3 )  
in the hypervirial relation given by Killingbeck (1982) in the form 

N 
2 

2E(  N +  l ) ( x " )  =I V,(2N+2+ m ) ( x N + * ) - -  ( N 2 -  l)(x"-'). (14) 

We obtain recurrence relations corresponding to the Gaussian potential case as follows: 

( 2 N + 2 ) Z :  E ( I ) A ( N , M - I )  
M 

0 

N[21( /+  1 ) - f ( N 2 - 1 ) ] A ( N - 2 ,  M )  
m 

- 1 V m [ 2 N + 2 m  + 4 ] A ( N + 2 m  + 2 ,  M - m - 1 ) .  ( 1 5 )  
"t-0 

Applying the Hellmann-Feynman theorem in the form 

we obtain a recurrence relation for the energy coefficients of the form 
m 

( M + I ) E ( M + l ) =  - 1 V m ( m + l ) A ( 2 m + 2 , M - m ) .  (17)  
,=0 
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The unperturbed value of E is given by 

E ( O ) = [ ( 4 n  + 2 / + 3 ) f i ] - A  

where n is the principal quantum number, I the angular momentum quantum number 
and we set A = 400 to agree with previous authors. The recurrence relations (15) and 
(17) with equation (18) and initial condition A(0,O) = 1 can be used to evaluate the 
energy coefficients E ( M ) .  The success and power of the method may strongly depend 
on the state and the angular momentum. The convergence rate decreases noticeably 
as / and n increase, as shown in table 1. This situation occurs in all problems involving 
eigenvalues in perturbation theory. The calculations show that the present procedure 
converges more quickly and accurately at low values of I and n. Our results are very 
accurate in this low range. The degree of agreement between our results and those 
arising from other methods is very good, both for ground and excited states. For I > 7 
we have not found numerical results produced by other methods, but our results show 
the eigenvalues for these states. Our main goal is to show that the energy eigenvalues 
of the attractive radial Gaussian potential calculated from the hypervirial method are 
in good agreement with other numerical results. We notice from table 1 that for the 
ground state and some of the first few excited states at low values of angular momentum 
we find the energy values with an accuracy of 20 significant figures. 

3. Renormalized series method for computing eigenvalues for the hydrogen atom with 
a Yukawa potential 

The general screened Coulomb potential given by (2) for hydrogen-like atoms may be 
written in the form 

V ( r ) = - Z r - '  f V,,,(Ar)" (19) 

where Z is the nuclear charge and A represents the screening parameter. Screened 
Coulomb potentials have received a great deal of attention, not only in the field of 
nuclear physics but also in other fields such as atomic, solid state and plasma physics. 
We employ the Hellmann-Feynman theorem and the hypervirial theorems to calculate 
the energy eigenvalues of various energy eigenvalues to high accuracy. In our work 
we wish to show that the renormalized series method can be used to calculate the 
bound state energies of a screened Coulomb potential to very high accuracy. This 
study was motivated by the work of Lai (1984), who observed that [ N - 1 ,  NI and 
[ N ,  NI Pad6 approximants to the energy series provide accurate estimates of eigen- 
values. The method which he used raises the question of whether or not the renormalized 
series method can give accurate estimates of the eigenvalues. The two approaches (his 
and ours), which have been employed to study the potential, use the Hellmann- 
Feynman and hypervirial theorems but our approach uses no Pad6 approximants. The 
renormalized series method for this problem is complicated by the presence of the 
renormalization parameter K .  A proper treatment would necessarily involve the choice 
of an ideal value for the renormalization parameter K .  The Hamiltonian for the Yukawa 
potential can be written as 

m=o 

H =  - f D 2 + + / ( / + l ) r - 2 - Z r - '  e-" 
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where 

p = l - A K  

where 1 is the orbital angular momentum quantum number. Here we are using atomic 
units, fi = e = m = 1. By employing the hypervirial recurrence relation given by (14) 
and applying the Hellmann-Feynman theorem (16), together with the perturbation 
expansions (12) and (13), as in the previous section the following two recurrence 
relations are obtained after some algebra: 

M 

( 2 N + 2 )  1 E(Z)A(N, M - Z) 
0 

= N [ l (  I +  I )  - i ( N 2 -  l ) ] A ( N - 2 ,  M) 

- 2 ( 2 N +  l ) [ p A ( N -  1, M )  + K A ( N -  1, M - I ) ]  
m 

- Z  1 V , ( 2 N + m + 2 ) A ( N + m ,  M - m - I )  
m = n  

m 

( M +  I )E(M+I)=  - K A - I ,  M ) - Z  1 V m ( m +  1)A(m, M - m ) .  

The coefficients Vm in (21) and (22) can be written as 

m =o 

(23) 

The coefficients V, in general alternate in sign and decrease with increasing (m). 
Where the energy of the unperturbed nth state E(0)=-Z2p2/2n2 is known, the 
equations (21) and (22) suffice to calculate the full set of E ( M )  and A ( N , M )  
coefficients, with the aid of equation (23) and the startingterm A(0,O) which is obtained 
from the condition of normalization ( rn)=( l )  = 1.  Our numerical results, presented in 
table 2, reveal that at low values of ( A )  for states (Is, 2s, 2p) we have excellent agreement 
with the values of Vrscay (1985). Our approach provides extremely accurate eigenvalues 
at low A. These values are accurate to all the digits shown and agree to over 19 digits 
with those of Vrscay. The power of this renormalized series techniques at low values 
of A has thus been demonstrated. However, at largervalues of A, the accuracy decreases 
as expected from our previous renormalized series calculations, although the accuracy 
is better than that of Lai (1984), who used the hypervirial theorem and Pad6 
approximants. In the preceding case we have calculated the bound state energy 
eigenvalues for a Yukawa potential with Z = 1, but we will extend our discussion of 
the Yukawa potential given by (2), to the case 2 > 1, where the screening parameter 
A = A\,[Z]'i3, corresponding to the Z dependence of the reciprocal of the Thomas-Fermi 
radius of the atom. Grant and Lai (1979) have recently evaluated the energy levels for 
atoms with ( 4 6 2 6 8 4 )  using Pad6 approximants [6,6] and [6,7], for K- and L-shell 
electrons with ( A n =  0.98). Here we use atomic units fi = e = m. = 1, so that distances 
are measured in units of the Bohr radius a, and energies in  units of 2 Ryd = 27.212 eV. 
The coefficients V, can be written for A = A\,Z'/' as given by (23), and for A = ,io as 

(-1)"+' 
V, =- 

( m + l ) ! '  

(24) 
113 m f l  v,,,=[-Z ] [ ( m + l ) ! ] - ' .  

The two coefficients (23) and (24) in general alternate in sign and the coefficients (23) 
decrease with increasing m, but the coefficients (24) decrease less quickly than the 
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coefficients (23). Forthe case Z > 1, in table 3 we list the energies of states (Is, 2s, 2p, 3s) 
for different values of A. and different values of Z ( 2 ~ 2 ~ 6 5 ) .  Our results are 
summarized in table 4, ranging from 4 s  Z G 84 in intervals of 5, in order to cover the 
range of low to high atomic number. For a given shell the results improve with increasing 
Z, but the accuracy of the results decreases as we go to higher shells. The renormalized 
series approach as used by Witwit (1989) is a very elegant and powerful approach to 
compute the energy eigenvalues with high accuracy. The approach achieved an accuracy 
of 15 significant figures for higher values of atomic number Z; to our knowledge such 
a high degree of accuracy for the eigenvalues of the Yukawa potential has never been 
obtained by any other method. We wish to draw attention to the fact that the renormal- 
ized series works equally well for A = A o  and A = hoZ''3 as perturbation parameter; we 
used the two values of A in order to verify the accuracy of the renormalized series for 
this calculation. Using two different values of screening parameter provides alternative 
approaches for computing energy eigenvalues. The calculated energy eigenvalues 
diverge at low atomic number Z, for the K-shell, whereas the series will work for zero 
values of the renormalization parameter for Z >  29. 

4. Renormalized series for calculating the eigenvalues for the exponential cosine 
screened Coulomb potential 

The radial Schrodinger equation for the exponential cosine screened Coulomb potential 
given by (3) is not solvable analytically and can be expressed as 

( 2 5 )  

This potential is of importance in solid-state physics. It is used in describing the 
potential between an ionized impurity and an electron in a metal or a semiconductor. 
It has also been used to represent the effective interaction between an electron and a 
positronium atom in a solid. In this section we set out to calculate the bound state 
energies of the (cos) potential for different eigenstates, by applying the hypervirial and 
Hellmann-Feynman theorems to calculate perturbatively the bound state energy levels 
without using perturbed wavefunctions. The (cos) potential can be expanded in a 
power series of the screening parameter by the Taylor expansion 

D2Y(r)+2[E + V(r) -fl(l+ I)r-']Y( r) = 0. 

(26) 
2 X m  

2! n! 
F ( x )  = F(O)+xF'(O)+- F"(O)+.  . _- F"(0).  

Also V( r) can be expanded as 
m 

V(r)=-r-'exp(-Ar) cos(Ar)=-r-' V,(Ar)" 
m = o  

m 
=-VO[~+AK]r- ' - r - l  V,(Ar)m p = l - A K .  (27) 

m = l  

Comparing (26) and (27). we obtain the coefficients 

2 
3! 

v,= 1 v, = -1 v, = 0 V,=- 

1024 4 v - _- 
4! 5 !  20! 21! 

v,, =-. 
4 1024 v,=- ... v,,= -- 4 -  
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The coefficients V ,  in equation (27) also can be expressed as 

vm = (-1)"(2)""cos - - (3 ? ? !  

Here, we use atomic units. If we insert the expansion of potential (33) in the hypeNiria1 
relation (14), we obtain the following relation 

( 2 N + 2 )  E ( I ) A ( N ,  M-I)  
M 

0 

= N [  Z ( Z +  1) -a( N 2 -  l)]A( N - 2 ,  M) 

- Vo(2N+ l)[pA( N - 1, M)+ K A ( N  -1, M - l ) ]  
m 

- 1 V , ( Z N + l + m ) A ( N + m - l , M - m ) .  (29) 

Applying the Hellmann-Feynman theorem to the expansion of the potential given by 
(33), we obtain the following relation 

m - l  

m 

( M + l ) E ( M +  1) = -KVoA(-l, M ) -  1 mV,B(m - 1, M - m +  1). (30) 
m = l  

The recurrence relations (35) and (36) can be used to calculate the energy coefficients 
from a knowledge of A(O,O) = 1 and E(O) = -p2/2n2.  The energy eigenvalues can be 
evaluated by using equations (35) and (36) using appropriate values of the renormaliz- 
ation parameter K ;  the results of this calculation are given in table 5 .  Our calculated 
values of the energy levels are good as compared with the results obtained from the 
hypervirial Pad6 approximant scheme of Lai (1982). From our results it can be seen 
that the hypervirial method with a renormalization parameter K is sufficient to calculate 
the energy eigenvalue without using Pad6 approximants. Although the renormalized 
series method has calculational elegance, it suffers from two major drawbacks. First, 
the accuracy of the numerical results for bound states falls off very rapidly with 
increasing value of the screening parameter A. Second, the calculations become pro- 
gressively more difficult as the state number n increases. The Yukawa potential given 
by ( 2 )  differs from the cos potential given by (3) by a cosine factor (cos A r ) ,  which 
leads to an oscillatory behaviour. It is of obvious interest to compare the result for 
the cos potential with those for Yukawa. Generally speaking the binding of the electron 
is weaker in the cos potential than in the Yukawa potential and this is clear from our 
results in tables 2 and 5 .  

5. Renormalized series for calculating the energy eigenvalues for the Hulthen potential 

The radial Schrodinger equation for the Hulthen potential (4) can be written in atomic 
units as 

(31) 

where A is a screening parameter. The Hulthen potential at small values of r behaves 
like a Coulomb potential, whereas for large values of r it decreases exponentially, so 
that its 'capacity' for bound states is smaller than that of the Coulomb potential. The 
energy levels always lie lower in the Coulomb case than in the Hulthen case. The 

D2'P(r)+2[E + A  exp(-Ar){l -exp(-Ar))' -+/(/+ l ) r -* ]Y(  r) = O  
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Hulthen potential, apart from its initial interest in a number of areas of physics ranging 
from nuclear physics (as a possible form of nuclear interaction) to scattering theory 
to atomic physics, has recently been shown to be a judicious choice of starting point 
for the perturbation theoretic treatment of screened Coulomb potentials. The purpose 
of this section is to study the bound state energies of the Hulthen potential for I # 0. 
The Hulthen potential VH(r) in (37)  can be rewritten in the form 

VH(r)= -A exp(-Ar)[l -exp(-Ar)]-l 

= -r-l(Ar)[exp(Ar)- 11-l 

where 

n l l C O " m 4 m L n n r  1 
0 0 1 J O . t L  ,,"""_I I - : i  

30 4! 14 322 30! 
v4=.-- -, . . . , v,,= 

and B, are the Bernoulli numbers. The Hulthen potential VH(r) in equation (37 )  can 
be rewritten in another form: 

= -5 [ coth( g) - 1 1  
2 

where 

1 z z3 2zs 22m 
coth(Z)=-+---+-+. . .+-B2,Z2"-' z 3 45 945 2m ! 

(34) 

(35 )  

where IZI < 71/2. 
Furthermore, we use the hypervirial relation (14) as used in previous sections, and 

using the energy and the expectation values (r') given by (12) and (13). Then the 
hypervirial relation for the Hulthen potential can be expressed as 

M 
(2N+2)  1 E(I)A(N,  M - I )  

0 

= N[I( If 1 )  -a( N2- 1)]A( N - 2 ,  M )  

- Vo(2N+1)[pA(N-1, M ) + K A ( N - l ,  M - l ) ]  
m 

- V , ( 2 N + m + l ) A ( N + m - l , M - m ) ,  
, = I  
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Applying the Hellmann-Feynman theorem given by (16) with the use of (12) and (13) 
we obtain the following relation 

m 

( M +  l )E(M+I)=-KVoA(-l ,  M)- mV,A(m -1, M+1 -m). (37) 
m = l  

With unperturbed energy E ( 0 )  = - p 2 / 2 n 2  and initial condition A(0,O) = 1, we use the 
recurrence relations (36) and (37) to compute the energy coefficient E ( M ) .  Energies 
of many eigenstates (2p to 8h) of the Hulthen potential are listed in table 6. It is 
apparent from table 6 that the energy series is converging very quickly at  low values 
of the screening parameter A. We wish here to make a few comments summarizing the 
advantage of using the renormalized series approach. It is important, however to 
remember that our results have been calculated directly from the hypervirial approach 
with a renormalization parameter K, without the use of Pad& approximants, which 
were used by Lai (1980) to improve a convergent series. It is necessary to point out 
that the agreement of our calculated energy eigenvalues with the results of Lai is good. 
The renormalized series approach works very well even for higher excited states with 
higher values of angular momentum. We believe that the accuracy of our results may 
be improved even further with a better choice of renormalization parameter K; the 
approach gives well converged eigenvalues for the best values of the renormalization 
parameter K.  

6. Hypemirial and the Pade approximant methods for calculating energy eigenvalues 
for potentials which are given by (5) and (6) 

In this section we study the two potentials which are given by ( 5 )  and (6). The potential 
given in equation ( 5 )  can be expressed as 

We let 

A x 2  = y. (39) 
The peg:rba!lgn ca!cu!a!ion by using hypemina! re!ations for the interaction siven 
by (38) is made by expanding tanh(Ax2) in a power series in (Ax2) which is valid for 
Ax2< r/2. Then tanh(y) can be expressed as 

22"[22"-' - l]Y2"-l 

B'", Y' 2YJ tanh(y)=y--+-+ ...+ 
3 15 2m!  

As x varies from ( - m s x s + m )  the potential runs from ( 0 s  V(x)sO)  through (-1) 
at x = 0. We can use the hypervirial relation (14) as in previous problems together with 
the perturbation expansions given by (12) and (13 )  for potential (38), leading to the 
recurrence relation 

M 
( 2 N + 2 ) 1  E ( I ) A ( N , M - I )  

0 

N 
2 

= -- [ N'- ]]A( N -2,  M ) + (  1 +A)[2N+4]A( N + 2 ,  M )  

m 

+ 1 Vm[2N+4m+4]A(N+4m+2, M - 2 m - 1 ) .  (41) 
",=I 
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If we apply the Hellmann-Feynman theorem which is given by (16) and use the energy 
and the expectation value (xM) series as given by equations (12) and (13) we obtain 
the following recurrence relation 

m 

( M + I ) E ( M  + 1)  = [ 2 m +  1]VmA(4m+2, M - 2 m )  (42) 
?"=I 

where 
22m(22"-1 - l ) y 2 m - I  

v, = 
2 m !  (43) 

Here B,, is the nth Bernoulli number. The unperturbed energy E ( 0 )  

E ( O ) = ( Z n + l ) m - l  (44) 
a!!ows us to use the TeCurrenCe re!a!ions (41) and (42) to compute the energy CgeffiGien! 
E ( M ) ,  with initial condition A(0,O) = 1. Also we extend the numerical calculation 
from one dimension to three dimensions. The main difference between the one- and 
three-dimensional potential lies in the angular momentum term. Then there is an 
additional potential term due to the angular momentum with its coefficient value 
V-,= f ( f + l ) ;  thereforethe first termontheright-handsidetakestheform[2N/(1+1)- 
( N / 2 ) ( N 2 - l ) ] A ( N - 2 ,  M )  and other terms in the recurrence relations (41) and (42) 
remain the same, and the unperturbed energy E ( 0 )  becomes 

E ( 0 )  = ( 4 n + 2 1 + 3 ) m - I .  (45) 
We also used the Pad& approximants to calculate the eigenvalues for potentials (5) 
and (6). Pad6 approximation is a useful technique when the convergence of the series 
is unacceptably slow or even non-existent. The Pad6 approximant is in the form of 
one polynomial divided by another polynomial. This technique provides us with a 
practical method of calculating results from energy series E ( n ) ,  since their use 
frequently accelerates convergence. The E[ M, NI Pad6 approximants to the energy 
series are given by 

a,+a,A+a,A'+a,A' ... a,AN 
bo+ b ,  A + b2A2+ b,A' . . . bMA 

E [ N ,  M I =  

= E(0) + E (  l ) A  + E ( 2 ) A 2 + .  . .+ E ( N  + +. . . (47) 

with b, defined to be unity. The coefficients (a( ,  i = 1,. . . , N )  and (bi, i = 0,. . . , M )  
in the numerator and denominator are calculated from the knowledge of E(1), 
E (2), . . . , E ( M  + N ) ,  which can be computed from the hypervirial relations. The 
energy series for the potentials (5) and (6) appears to be convergent for 0.01 =z A =z 0.1. 
Our calculated energy values E. used the E [ N ,  NI Pad6 approximants to the energy 
series for the ground and the first five excited states. Tables 7 and 8 show the eigenvalues 
for potentials (5) and (6). It is clear from our results that the energy series converges 
very quickly at low values of A, but the convergence decreases as A increases. It is 
important to  point out that the accuracy of results for this problem has been achieved 
without the use of the renormalization parameter K;  also we have used Pad6 
approximants as a second method of computing the energy eigenvalue. The agreement 
between the two methods is very good for low values of A,  but for high values of A 
the Pad6 approximants give more accurate eigenvalues. We have computed many 
energy eigenvalues of the potential given by equation ( 5 ) ,  for different values of 
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(0.01 G A S  0.1) and for the ground and first four excited states. We list our results for 
this calculation in table 7 for one dimension and in table 8 for three dimensions, for 
different values of (0.01 cAS0.05) ,  different values of ( I = O ,  2 , S ,  10) and state 
number n. 
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